SCXI Universal Strain Gauge Input Module

Overview
The National Instruments SCXI-1520 is an 8-channel universal strain-gauge input module that offers all of the features you need for simple or advanced strain and bridge-based sensor measurements. With this single module, you can read signals from strain, load, force, torque, and pressure sensors. Each NI SCXI-1520 is shipped with a NIST-traceable calibration certificate, and includes an onboard reference for automatic calibration in changing environments.

For accurate strain measurements, the SCXI-1520 offers a programmable amplifier and programmable 4-pole Butterworth filter on each channel. Each channel also has an independent 0-10 V programmable excitation source with remote sense per channel. In addition, the SCXI-1520 system offers a half-bridge completion resistor network in the module, and a socketed 350 quarter-bridge completion resistor in the SCXI-1314 terminal block. A 120 quarter-bridge completion resistor is also included with the terminal block. The SCXI-1520 also offers an automatic null compensation circuit, remote sensing, and two shunt calibration circuits per channel. In addition, the SCXI-1520 includes the simultaneous-sample-and-hold feature using track-and-hold (T/H) circuitry for simultaneous-sampling applications.

Each SCXI-1520 module can multiplex its signals into a single channel of the controlling DAQ device, and you can add modules to increase channel count. In NI-DAQ 7, parallel mode operation is available for high-speed acquisitions. In this mode, each channel is routed to a unique analog input channel of the DAQ device to which it is cabled. Parallel mode is not available in NI-DAQ Traditional.

Analog Input
Each of the eight analog inputs of the SCXI-1520 consists of a programmable instrumentation amplifier, 4-pole Butterworth filter, and simultaneous sample and hold circuit. You can program the gain of each channel individually to one of 49 input ranges from ±10 mV to ±10 V. You can also program each lowpass filter individually for 10 Hz, 100 Hz, 1 kHz, 10 kHz, or bypass mode. The 4-pole Butterworth filters provide a sharp cutoff to block noise while maintaining maximum flatness in the passband. Finally, the SCXI-1520 provides random scanning capability, so you acquire data from the channels you select in any order, thereby reducing your overall scan times. For applications requiring fewer than eight strain gauges, you can use the extra analog input channels for general-purpose analog signals.

Simultaneous Sampling
Each channel of the SCXI-1520 includes T/H circuitry so you can digitize simultaneous events with negligible skew time between channels. The outputs of the T/H amplifiers follow their inputs until they receive a hold signal from the DAQ device (typically at the start of a scan). At the hold signal, the T/H amplifiers simultaneously freeze, holding the input signal levels constant. The DAQ device then digitizes each frozen signal sequentially, giving you simultaneous sampling between channels. To calculate maximum sampling rates for the SCXI-1520, refer to page 795.

<table>
<thead>
<tr>
<th>Module</th>
<th>Quarter-Bridge (120, 350)</th>
<th>Half-Bridge (120, 350)</th>
<th>Full-Bridge (120, 350)</th>
<th>Force, Load, Torque, Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXI-1520</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1. Signal Compatibility
SCXI Universal Strain Gauge Input Module

Excitation

Each channel of the SCXI-1520 has an independent voltage excitation source. You can program each excitation channel to one of 17 voltage excitation levels from 0 to 10 V. These sources can drive a 350 W full bridge to the maximum 10 V level. Each excitation channel incorporates remote sensing circuitry to automatically compensate for voltage drops due to lead resistance. This circuitry corrects the excitation level on the fly so the programmed excitation level is accurately applied at the sensor. You can also monitor these excitation sources to detect open or fault situations.

Table 2. Excitation Values

<table>
<thead>
<tr>
<th>Strain Gauge</th>
<th>Quarter-Bridge</th>
<th>Half-Bridge</th>
<th>Full-Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>6.25 V</td>
<td>6.9 V</td>
<td>3.125 V</td>
</tr>
<tr>
<td>350</td>
<td>10.00 V</td>
<td>10.0 V</td>
<td>10.00 V</td>
</tr>
</tbody>
</table>

Automatic Null Compensation

Each input channel of the SCXI-1520 includes a circuit to remove bridge offset voltage. Driver software nulls the offset voltage to zero in seconds. You do not need to manually adjust a potentiometer. By removing this offset through the measurement hardware, you can increase your system gain to achieve better measurement sensitivity and resolution.

Bridge Completion

The SCXI-1520 accepts quarter, half, and full-bridge sensors. Half-bridge completion is provided in the SCXI-1520, and you can enable it through software. The RN-55 style quarter-bridge completion resistors are provided in the SCXI-1314 front-mounting terminal block. They are socketed, so you can replace them with your own resistors.

Shunt Calibration

Each input channel of the SCXI-1520 includes two independent shunt calibration circuits, with which you can simulate two separate loading effects on your strain-based device and compensate for any possible gain errors. The RN-55 style shunt calibration resistors are in sockets and located in the SCXI-1314 front-mounting terminal block. You enable or disable the shunt resistors through software commands.
SCXI Universal Strain Gauge Input Module

Calibration
The SCXI-1520 provides simple yet powerful calibration capabilities. Each module includes a precision onboard calibration source, which you can programatically route to any analog input channel. By using simple software commands, you perform calibrations to compensate for environmental changes without connecting external hardware. Each module has an onboard calibration EEPROM that stores calibration constants for each channel; factory calibration constants are stored in a protected area of the EEPROM. Additional user-modifiable locations mean calibration can occur under your exact operating conditions. NI-DAQ Traditional and NI-DAQ 7 transparently use the calibration constants to correct for gain and offset errors for each channel.

Specifications
Typical for 25 °C unless otherwise noted

Complete Accuracy Table, Voltage

<table>
<thead>
<tr>
<th>Module</th>
<th>Nominal Range</th>
<th>Gain</th>
<th>Overall Gain</th>
<th>Percent of Reading</th>
<th>Offset</th>
<th>System Noise (peak, 3 sigma)*</th>
<th>Temperature Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Point</td>
<td>100 Point Average</td>
<td>Gain Drift (%/°C)</td>
<td>Offset (µV/°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCXI-1520</td>
<td>±10.0 V</td>
<td>1.0</td>
<td>±0.1</td>
<td>±3.0 mV</td>
<td>±10.0 mV</td>
<td>1.0 mV</td>
<td>±0.03 ±25</td>
</tr>
<tr>
<td></td>
<td>±5.0 V</td>
<td>2.0</td>
<td>±0.1</td>
<td>±1.5 mV</td>
<td>±5.0 mV</td>
<td>0.5 µV</td>
<td>±0.03 ±25</td>
</tr>
<tr>
<td></td>
<td>±1.8 V</td>
<td>4.2</td>
<td>±0.1</td>
<td>±0.5 mV</td>
<td>±1.8 mV</td>
<td>0.2 µV</td>
<td>±0.03 ±25</td>
</tr>
<tr>
<td></td>
<td>±1.0 V</td>
<td>10.0</td>
<td>±0.1</td>
<td>±0.3 mV</td>
<td>±1.0 mV</td>
<td>±0.1 µV</td>
<td>±0.03 ±5</td>
</tr>
<tr>
<td></td>
<td>±500.0 mV</td>
<td>20.0</td>
<td>±0.1</td>
<td>±150.0 µV</td>
<td>±500.0 µV</td>
<td>50.0 µV</td>
<td>±0.03 ±5</td>
</tr>
<tr>
<td></td>
<td>±100.0 mV</td>
<td>42.0</td>
<td>±0.1</td>
<td>±75.0 µV</td>
<td>±100.0 µV</td>
<td>20.0 µV</td>
<td>±0.03 ±5</td>
</tr>
<tr>
<td></td>
<td>±50.0 mV</td>
<td>200.0</td>
<td>±0.1</td>
<td>±15.0 mV</td>
<td>±50.0 mV</td>
<td>±5.0 µV</td>
<td>±0.03 ±5</td>
</tr>
<tr>
<td></td>
<td>±1.8 mV</td>
<td>420.0</td>
<td>±0.1</td>
<td>±25.0 mV</td>
<td>±1.8 mV</td>
<td>±2.0 µV</td>
<td>±0.03 ±5</td>
</tr>
<tr>
<td></td>
<td>±1.0 mV</td>
<td>1000.0</td>
<td>±0.1</td>
<td>±250.0 mV</td>
<td>±1.0 mV</td>
<td>±2.0 µV</td>
<td>±0.03 ±5</td>
</tr>
</tbody>
</table>

*Absolute Accuracy (15 to 35 °C). Absolute accuracy is (voltage reading) x (% of Reading) + (offset error) + (system noise). To include the effects of temperature drift outside the range 15 to 25 °C, add the term (Gain drift) x (Range) x (Temperature Drift), where T is temperature difference between the module temperature and 15 or 35 °C, whichever is smaller. Bandwidth setting is 10 Hz and Scan rate for 100-point averages is 200 scans/s. Excitation is set to zero Volts. To calculate the absolute accuracy for the SCXI-1520 refer to page 194 or visit ni.com/accuracy

Ordering Information
NI SCXI-1520 ..777966-20
For information on extended warranty and value-added services, see page 20.

BUY ONLINE!
Visit ni.com/info and enter scxi1520.
See page 276 to configure your complete SCXI system.

Complete Accuracy Table, Strain, GF = 2.0, Excitation = 5 V

<table>
<thead>
<tr>
<th>Module</th>
<th>Bridge</th>
<th>Range</th>
<th>Gain</th>
<th>Percent of Reading</th>
<th>Hardware Nulling Range</th>
<th>System Noise (peak, 3 sigma)*</th>
<th>Temperature Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCXI-1520</td>
<td>Quarter-Bridge</td>
<td>±60,000 µε</td>
<td>100</td>
<td>±0.1</td>
<td>±0.000 µε</td>
<td>±0.0 µε</td>
<td>±0.03 ±10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half-Bridge</td>
<td>±4,000 µε</td>
<td>1000</td>
<td>±0.1</td>
<td>±4,000 µε</td>
<td>±4 µε</td>
<td>±0.03 ±16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full-Bridge</td>
<td>±2,500 µε</td>
<td>1000</td>
<td>±0.1</td>
<td>±2,500 µε</td>
<td>±2 µε</td>
<td>±0.03 ±8</td>
</tr>
</tbody>
</table>

*Absolute Accuracy (15 to 35 °C). Absolute accuracy is (voltage reading) x (% of Reading) + (offset error) + (system noise). To include the effects of temperature drift outside the range 15 to 25 °C, add the term (Gain drift) x (Range) x (Temperature Drift), where T is temperature difference between the module temperature and 15 or 35 °C, whichever is smaller. Bandwidth setting is 10 Hz and Scan rate for 100-point averages is 200 scans/s. To calculate the absolute accuracy for the SCXI-1520 refer to page 194 or visit ni.com/accuracy
SCXI Universal Strain Gauge Input Module

Specifications

Analog Input Characteristics
- Number of channels: 8
- Voltage gain settings: X1 to X1000 with the following gain settings: 1; 1.15; 1.3; 1.5; 1.8; 2.2; 2.4; 2.7; 3.1; 3.4; 4.2; 5.6; 6.5; 8.7; 10; 11.5; 13; 15; 18; 20; 22; 24; 27; 31; 36; 56; 75; 87; 100; 115; 130; 150; 180; 200; 220; 240; 270; 310; 360; 420; 560; 650; 750; 870; 1,000

Filter Characteristics
- NMR (Normal Mode Rejection Ratio) at 62-dB typical
- CMRR (Common Mode Rejection Ratio) at 60 Hz

Dynamic Characteristics
- Module: SCXI-1320
- Scan Interval: Settle to ±0.0125 %, ±0.006 %, ±0.0035 %
- System noise: 3 µs, 10 µs, 20 µs
- Noise RTI, gain=200, 0.1 to 10 Hz: 2.0 µV/√Hz
- Dot noise RTI, gain=200, 1000 Hz: 16 µV/√Hz

Excitation Characteristics
- Offset error: ±20 nA maximum
- Gain error: ±0.35% of setting, ±0.1% of EEPROM value
- Gain drift: ±40 ppm/°C maximum

Environmental
- Operating temperature: 0 to 50 °C
- Storage temperature: -20 to 70 °C
- Relative humidity: 10 to 90% noncondensing

Certifications and Compliances

National Instruments • Tel: (800) 433-3488 • Fax: (512) 683-9300 • info@ni.com • ni.com

For a definition of specific terms, please visit ni.com/glossary
Multifunction DAQ and SCXI Signal Conditioning Accuracy Specifications Overview

Every Measurement Counts
There is no room for error in your measurements. From sensor to software, your system must deliver accurate results. NI provides detailed specifications for our products so you do not have to guess how they will perform. Along with traditional data acquisition specifications, our E Series multifunction data acquisition (DAQ) devices and SCXI signal conditioning modules include accuracy tables to assist you in selecting the appropriate hardware for your application.

To calculate the accuracy of NI measurement products, visit ni.com/accuracy

Absolute Accuracy
Absolute accuracy is the specification you use to determine the overall maximum tolerance of your measurement. Absolute accuracy specifications apply only to successfully calibrated DAQ devices and SCXI modules. There are four components of an absolute accuracy specification:

- **Percent of Reading** – is a gain uncertainty factor that is multiplied by the actual input voltage for the measurement.
- **Offset** – is a constant value applied to all measurements.
- **System Noise** – is based on random noise and depends on the number of points averaged for each measurement (includes quantization error for DAQ devices).
- **Temperature Drift** – is based on variations in your ambient temperature.
- **Input Voltage** – the absolute magnitude of the voltage input for this calculation. The fullscale voltage is most commonly used.

Based on these components, the formula for calculating absolute accuracy is:

\[
\text{Absolute Accuracy} = \pm (\text{Input Voltage} \times \text{% of Reading}) + (\text{Offset} + \text{System Noise} + \text{Temperature Drift})
\]

Absolute Accuracy RTI = (Absolute Accuracy Input Voltage) / RTI = relative to input

Temperature drift is already accounted for unless your ambient temperature is outside 15 to 35 °C. For instance, if your ambient temperature is at 45 °C, you must account for 10 °C of drift. This is calculated by:

\[
\text{Temperature Drift} = \text{Temperature Difference} \times \% \text{ Drift per °C} \times \text{Input Voltage}
\]

Absolute Accuracy for DAQ Devices
Absolute Device Accuracy at Full Scale is a calculation of absolute accuracy for DAQ devices for a specific voltage range using the maximum voltage within that range taken one year after calibration, the Accuracy Drift Reading, and the System Noise averaged value.

Below is the Absolute Accuracy at Full Scale calculation for the NI PCI-6052E DAQ device after one year using the ±10 V input range while averaging 100 samples of a 10 V input signal. In all the Absolute Accuracy at Full Scale calculations, we assume that the ambient temperature is between 15 and 35 °C. Using the Absolute Accuracy table on the next page, we see that that the calculation for the ±10 V input range for Absolute Accuracy at Full Scale yields 4.747 mV. This calculation is done using the parameters in the same row for one year Absolute Accuracy Reading, Offset and Noise + Quantization, as well as a value of 10 V for the input voltage value.

\[
\text{Absolute Accuracy} = \pm (10 \times 0.00037) + 947.0 \mu V + 87 \mu V = \pm 4.747 \text{ mV}
\]

In many cases, it is helpful to calculate this value relative to the input (RTI). Therefore, you do not have to account for different input ranges at different stages of your system.

\[
\text{Absolute Accuracy RTI} = \pm (0.0004747/10) = \pm 0.0475\%
\]

The following example assumes the same conditions except that the ambient temperature is 40 °C. You can begin with the calculation above and add in the Drift calculation using the % Drift per °C from Table 2 on page 196.

\[
\text{Absolute Accuracy} = 4.747 \text{ mV} + ((40 - 35 °C) \times 0.000006 °C/10 \text{ V}) = \pm 5.047 \text{ mV}
\]

\[
\text{Absolute Accuracy RTI} = \pm (0.0005047/10) = \pm 0.0505\%
\]

Absolute Accuracy for SCXI Modules
Below is an example for calculating the absolute accuracy for the NI SCXI-1102 using the ±100 mV input range while averaging 100 samples of a 14 mV input signal. In this calculation, we assume the ambient temperature is between 15 and 35 °C, so Temperature Drift = 0. Using the accuracy table on page 313, you find the following numbers for the calculation:

\[
\begin{align*}
\text{Input Voltage} &= 0.014 \\
\text{% of Reading Max} &= 0.02\% = 0.0002 \\
\text{Offset} &= 0.000025 \text{ V} \\
\text{System Noise} &= 0.000005 \text{ V}
\end{align*}
\]

\[
\text{Absolute Accuracy} = \pm (0.014 \times 0.000025 + 0.000005) \text{ V} = \pm 32.8 \mu \text{V}
\]

\[
\text{Absolute Accuracy RTI} = \pm (0.000328 / 0.014) = \pm 0.234 \%
\]

The following example assumes the same conditions, except the ambient temperature is 40 °C. You can begin with the Absolute Accuracy calculation above and add in the Temperature Drift.

\[
\text{Absolute Accuracy} = 32.8 \mu \text{V} + (0.014 \times 0.000005 + 0.000001) \times 5 = \pm 38.15 \mu \text{V}
\]

\[
\text{Absolute Accuracy RTI} = \pm (0.0003815 / 0.014) = \pm 0.273 \%
\]
Multifunction DAQ and SCXI Signal Conditioning

Accuracy Specifications Overview

For both DAQ devices and SCXI modules, you should use the Single-Point System Noise specification from the accuracy tables when you are making single-point measurements. If you are averaging multiple points for each measurement, the value for System Noise changes. The Averaged System Noise in the accuracy tables assumes that you average 100 points per measurement. If you are averaging a different number of points, use the following equation to determine your Noise + Quantization:

\[\text{System Noise} = \text{Average System Noise from table} \times \sqrt{\frac{100}{\text{number of points}}} \]

For example, if you are averaging 1,000 points per measurement with the PCI-6052E in the ±10 V (±100 mV for the SCXI-1102) input range, System Noise is determined by:

NI PCI-6052E**
System Noise = 87.0 µV x √(100/1000) = 27.5 µV
NI SCXI-1102
System Noise = 5 µV x SQRT(100/1000) = 1.58 µV

**The System Noise specifications assume that dithering is disabled for single-point measurements and enabled for averaged measurements.

See page 21 or visit ni.com/calibration for more information on the importance of calibration on DAQ device accuracy.

Absolute System Accuracy

Absolute System Accuracy represents the end-to-end accuracy including the signal conditioning and DAQ device. Because absolute system accuracy includes components set for different input ranges, it is important to use Absolute Accuracy RTI numbers for each component.

\[\text{Total System Accuracy RTI} = \pm \sqrt{\left(\text{Module Absolute Accuracy RTI}\right)^2 + \left(\text{DAQ Device Absolute Accuracy RTI}\right)^2} \]

The following example calculates the Absolute System Accuracy for the SCXI-1102 module and PCI-6052E DAQ board described in the first examples:

\[\text{Total System Accuracy RTI} = \pm \sqrt{(0.00273)^2 + (0.000505)^2} = \pm 0.278\% \]

Units of Measure

In many applications, you are measuring some physical phenomenon, such as temperature. To determine the absolute accuracy in terms of your unit of measure, you must perform three steps:

1. Convert a typical expected value from the unit of measure to voltage
2. Calculate absolute accuracy for that voltage
3. Convert absolute accuracy from voltage to the unit of measure

Note: it is important to use a typical measurement value in this process, because many conversion algorithms are not linearized. You may want to perform conversions for several different values in your probable range of inputs, rather than just the maximum and minimum values.

For an example calculation, we want to determine the absolute system accuracy of an NI SCXI-1102 system with a NI PCI-6052E, measuring a J-type thermocouple at 100 °C.

1. A J-type thermocouple at 100 °C generates 5.268 mV (from a standard conversion table or formula)
2. The absolute accuracy for the system at 5.268 mV is ±0.82%.
 This means the possible voltage reading is anywhere from 5.225 to 5.311 mV.
3. Using the same thermocouple conversion table, these values represent a temperature spread of 99.3 to 100.7 °C.

Therefore, the absolute system accuracy is ±0.7 °C at 100 °C.

Benchmarks

The calculations described above represent the maximum error you should receive from any given component in your system, and a method for determining the overall system error. However, you typically have much better accuracy values than what you obtain from these tables.

If you need an extremely accurate system, you can perform an end-to-end calibration of your system to reduce all system errors. However, you must calibrate this system with your particular input type over the full range of expected use. Accuracy depends on the quality and precision of your source.

We have performed some end-to-end calibrations for some typical configurations and achieved the results in Table 1:

To maintain your measurement accuracy, you must calibrate your measurement system at set intervals over time.

For a current list of SCXI signal conditioning products with calibration services, please visit ni.com/calibration
Multifunction DAQ and SCXI Signal Conditioning Accuracy Specifications Overview

<table>
<thead>
<tr>
<th>Module</th>
<th>Empirical Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXI-1102</td>
<td>±0.25°C at 250°C, ±24 mV at 9.5 V</td>
</tr>
<tr>
<td>SCXI-1112</td>
<td>±0.1°C at 300°C</td>
</tr>
<tr>
<td>SCXI-1125</td>
<td>±0.2 mV at 2 V</td>
</tr>
</tbody>
</table>

Table 1. Possible Empirical Accuracy with System Calibration

<table>
<thead>
<tr>
<th>Module</th>
<th>±0.25°C at 250°C</th>
<th>±24 mV at 9.5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXI-1102</td>
<td>±0.25°C at 250°C</td>
<td>±24 mV at 9.5 V</td>
</tr>
<tr>
<td>SCXI-1112</td>
<td>±0.1°C at 300°C</td>
<td></td>
</tr>
<tr>
<td>SCXI-1125</td>
<td>±0.2 mV at 2 V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Range (V)</th>
<th>% of Reading</th>
<th>Absolute Accuracy</th>
<th>Temp Drift (%/°C)</th>
<th>Absolute Accuracy at Full Scale (mV)</th>
<th>Resolution (µV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive FS</td>
<td>Negative FS</td>
<td>24 Hours</td>
<td>1 Year</td>
<td>Offset (µV)</td>
<td>Single Point</td>
</tr>
<tr>
<td>10.0</td>
<td>-10.0</td>
<td>0.0354</td>
<td>0.0371</td>
<td>947.0</td>
<td>981.0</td>
</tr>
<tr>
<td>5.0</td>
<td>-5.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>476.0</td>
<td>491.0</td>
</tr>
<tr>
<td>2.5</td>
<td>-2.5</td>
<td>0.0054</td>
<td>0.0071</td>
<td>241.0</td>
<td>245.0</td>
</tr>
<tr>
<td>1.0</td>
<td>-1.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>99.2</td>
<td>98.1</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.5</td>
<td>0.0054</td>
<td>0.0071</td>
<td>52.1</td>
<td>56.2</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.25</td>
<td>0.0054</td>
<td>0.0071</td>
<td>28.6</td>
<td>32.8</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.1</td>
<td>0.0054</td>
<td>0.0071</td>
<td>14.4</td>
<td>22.4</td>
</tr>
<tr>
<td>0.05</td>
<td>-0.05</td>
<td>0.0054</td>
<td>0.0071</td>
<td>7.7</td>
<td>19.9</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>476.0</td>
<td>491.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>241.0</td>
<td>245.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>99.2</td>
<td>98.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>52.1</td>
<td>56.2</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>28.6</td>
<td>39.8</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>14.4</td>
<td>22.4</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>0.0054</td>
<td>0.0071</td>
<td>7.7</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Note: Accuracies are valid for measurements following an internal (self) E Series calibration. Averaged numbers assume averaging of 100 single-channel readings. Measurement accuracies are listed for operational temperatures within ±1°C of internal calibration temperature and ±10°C of external or factory-calibration temperature. One-year calibration interval recommended. The absolute accuracy at full scale calculations were performed for a maximum range input voltage (for example, 10 V for the ±10 V range) after one year, assuming 100 point averaging of data.